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SUMMARY

We present results from an analysis of human visceral Leishmaniasis cases based on public health
records of Belo Horizonte, Brazil, from 1994 to 1997. The main emphasis in this study is on the
development of a spatial statistical model to map and project the rates of visceral Leishmaniasis in
Belo Horizonte. The model allows for space–time interaction and it is based on a hierarchical Bayesian
approach. We assume that the underlying rates evolve in time according to a polynomial trend speci?c
to each small area in the region. The parameters of these polynomials receive a spatial distribution
in the form of an autonormal distribution. While the raw rates are extremely noisy and inadequate to
support decisions, the resulting smoothed rates estimates are considerably less a�ected by small area
issues and provide very clear directions to implement public health actions. Copyright ? 2001 John
Wiley & Sons, Ltd.

1. INTRODUCTION

Visceral Leishmaniasis is a typically rural zoonotic disease of wide prevalence in many
countries from Europe, Asia and the Americas. Its cycle includes man, the fox (Lycalopex
vetulus) and the dog (Canis familiaris) as wild and domestic reservoirs, respectively, and the
sandDy Lutzomya longipalpis as a vector. The importance of the dog as a reservoir is well
known [1–3]. Recently, several urban foci have been described in large Brazilian cities such
as São LuGHs [4], Natal [5], Teresina [6; 7] and Belo Horizonte [8].
In March 1989, one case of human visceral Leishmaniasis (HVL) was diagnosed in SabarGa,

a municipality located in the Belo Horizonte metropolitan region [8]. The Universidade Federal
de Minas Gerais (UFMG) and Funda2cão Nacional de SaGude (FNS) worked together to detect
new human cases and undertake control actions in that region.
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In 1992, seropositive dogs were detected in the Belo Horizonte Northeast region. In 1993,
2288 dog blood samples were screened and 5.8 per cent tested positive. One year later,
2951 dogs were screened and 7.6 per cent tested positive. In 1994, there were 3.1 per cent
seropositive dogs among 12 317 examined. In 1995, 107 850 dogs were analysed and 2.9 per
cent tested positive. These numbers changed in 1996 to 110 000 samples collected and 3.8
per cent testing positive. The Brazilian Health Ministry recommends the elimination of all
positive dogs and indoor DDT nebulization and these recommendations were followed since
the beginning of the epidemics.
The canine prevalence has always preceded the occurrence of human cases. In 1994, 29

human cases were diagnosed in Belo Horizonte, all located in the Eastern and Northeastern
regions [9]. In 1995, 46 human cases were reported to the public health oQcials. In 1996,
45 human cases were detected and, only in the ?rst semester of 1997, 40 cases were reported.
Among the 160 human cases reported from 1994 to 1997, there were 17 deaths, implying
a lethality of 10 per cent.
In spite of the control actions undertaken, the number of new human cases did not decrease

substantially over time as expected by public health oQcials. The health control programme
recommended by the Brazilian Health Ministry is an expensive programme amounting to ap-
proximately U.S. $ 1.5 million in 1995 in Belo Horizonte. Considering the high cost involved,
it would be necessary to rank the areas of the city according to a priority score. Based on that
score, it would then be possible to aim for a more focused action of the municipality health
oQcials, accomplishing a decrease in costs and providing better service. Since the small num-
ber cases in each area produce very unstable rates, this brings the need for a better method
to estimate the underlying risks.
The objective of this work is to map the rates of HLV in Belo Horizonte, to estimate

their spatial risk structure and to follow their evolution from 1994 to 1997. Additionally,
we construct a model to project the rates providing subsidies for public health interventions
in the higher risk areas. We use a space–time Bayesian model proposed by Bernadinelli
et al. [10] but with a slightly di�erent parameterization. In contrast to their results, we ?nd
strong evidence of space–time interaction in our data. The model ?lters out the enormous
random variation of the rates which is unrelated to the underlying risk. We also use the
parametric model to project the rates for the next years and use a cross-validation type of
procedure to select an appropriate model for the rates. The model brings great bene?ts to
orient public health actions since an extremely noisy data set can be smoothed out to produce
plots and maps where the information on the disease dynamics is evident, at the cost of weak
constraints on the spatial smoothness of the disease rates.

2. THE DATA

Belo Horizonte is a large Brazilian city with 2091 thousand inhabitants and 600 thousand
households according to the last 1995 census. Located in the Southeast part of Brazil, it ranks
third in size in the country and it has a large service and industrial labour population. Starting
in 1960, it had a fast population increase stabilizing between 1990 and 1995.
The Belo Horizonte municipality is partitioned into nine public health administrative regions,

called Sanitary Districts (SD). Each SD is further partitioned in �areas de abrangência, here-
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Figure 1. Map of Belo Horizonte divided into 117 health zones.

after called zones. These zones are relatively homogeneous areas endowed with a reference
health centre, and composed by the aggregation of census enumeration areas de?ned by IBGE,
the Brazilian oQcial census agency. The boundaries of the zones were digitized by the mu-
nicipal Health OQce and they are shown in Figure 1, where some zones are labelled for
later reference purposes in the paper. The human cases of HVL are classi?ed according to
their occurrence zone and date of ?rst symptoms. In this study, the available information is
composed by the number of human disease cases and total population count for each of the
117 zones and each of the periods 1994=1995, 1995=1996 and 1996=1997. A period comprises
the second semester of a year, starting in 07=01, and the ?rst semester of the following year,
ending in 06=30.
We count the registered cases in each area and in each period. We do not have an estimate

of coverage but, HVL being a serious disease requiring careful medical assistance, we believe
most of the cases seek the health services. Concerning hospital noti?cation, we also believe
it is almost complete, since the medication is delivered by health oQcials following the
noti?cation.
We cannot georeference 2.9 per cent of the cases’ data because they are homeless patients.

In this situation we do not assign an area to the case and discard it from the analysis.

3. MAPPING DISEASE RATES

The classical procedure to deal with disease event rates is to map the crude rates (CR) or
some standardized rate, if age–sex subgroups information is available. The crude rates are

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2319–2335
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the maximum likelihood estimates of the underlying rates if the counts follow a Poisson
distribution. That is, suppose that

(Xi|Pi; �i) ∼ Poisson(Pi�i)

where Xi is the count of disease cases, Pi is the risk population, and �i is the underlying rate
of occurrence in area, i; i=1; : : : ; N . Additionally, we assume that the counts are independent,
conditionally on the underlying rates. Then, the maximum likelihood (and uniformly minimum
variance unbiased) estimator of �i is given by �̂i=Xi=Pi.

However, when the investigation areas (and their populations) are small and the disease
under study is rare, the maps made with the CRs can be highly a�ected by the extreme
variability of rates calculated in the less populated areas [11]. In fact, in areas with small
population, a small change in the number of cases implies a considerable change in the crude
rates. Usually this change is caused by casual random Ductuation unrelated to the underlying
risk. This is observed in Figures 2(a)–(c), which present the maps of HVL crude rates in Belo
Horizonte. Note that some zones show large changes over time, with some zones standing
out at some time points and fading away in the next period. This suggests that the maximum
likelihood estimator has large variance because, although possible, it is not likely that these
large changes are due to corresponding changes in the underlying risks over the period.
A large literature has been developed to map small area statistics [12–15]. Clayton [16]

proposed a hierarchical model which was further developed by Besag et al. [17] in a spatial
Bayesian setting which has generated much interest. The idea is to impose a plausible spatial
relationship structure among the areas and to model the logarithm of the relative risks as
an autonormal joint distribution. As a consequence, the information on neighbouring areas
is used to improve the estimation in a given area. This procedure avoids the instability of
estimates based only on the crude rates of that area, since it uses the information about the
events in neighbouring areas which should have similar risks. The de?nition of neighbourhood
is based on the adjacency: areas sharing boundaries are considered neighbours. Other Dexible
neighbourhood structures have been suggested in the context of disease mapping [18].
Recently, a study [19] was published about the geographical variability of breast cancer

and Hodgkin’s disease in the Sardinia region, Italy. In the comparison between the maps
using the maximum likelihood estimates and those using the Bayesian procedure, the results
show that the Bayesian maps are smoother than the crude rates maps, resulting in visually
more informative maps with simpler epidemiological interpretation. The Bayesian approach
has become the main methodology to map disease rates [11].

4. SPACE–TIME MODELLING OF RATES

There are not many studies addressing the issue of space and time modelling of rates. Most
of them deal with epidemics of infectious diseases [20] and they use compartment models
concentrating more on the disease dynamics than in its spatial aspects [21]. Much e�ort has
been made to add spatial components to susceptible-infective-removed models, as well as to
many linear and non-linear regression formulations [22].
A few studies deal with small area statistics problems for space–time data. Waller et al.

[23] analysed a data set on mortality from lung cancer for 21 successive years in the 88
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Figure 2. Maps of HLV crude rates (per 100 thousand) in the zones of Belo Horizonte:
(a) the period 1994=1995; (b) the period 1995=1996; (c) the period 1996=1997. White areas

are those with zero inhabitants.
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counties of Ohio. Xia and Carlin [24] and Knorr-Held and Besag [25] reanalysed the same
data set, improving the results. We discuss their models in the next section.
Exceptions to the neglect of space–time interaction modelling are the works of Bernadinelli

et al. [10] and Songini et al. [26] on the analysis of the geographical variation of insulin-
dependent diabetes mellitus (IDDM) across Sardinia. They model the logarithm of the rates
as a linear function of time with area-speci?c coeQcients having a spatial prior which implies
neighbouring areas exhibiting similar risk pro?les. However, in their application of their model
to the IDDM data, they found no evidence of space–time interaction. That is, their ?nal ?tted
model had each area following a linear trend with area-speci?c intercept and a constant time-
trend coeQcient.
In our paper, using a di�erent parameterization, we adopt the model proposed by

Bernadinelli et al. [10]. In contrast to their results, we ?nd strong evidence of space–time
interaction; we use the model to project the rates, and discuss model selection using a cross-
validation type of procedure.
To describe our method, denote by X the matrix with element Xit representing the number

of cases of HVL in area i at time t; i=1; : : : ; 117 and t=1; 2; 3. The time index corresponds
to the one year periods from mid-1994 to mid-1997. Similarly, we de?ne the matrix P with
element Pit representing the population of area i in time t. Finally, we de?ne the matrix E
with element �it representing the underlying rate of events in area i at time t.

Our model assumes that, given the rates E and the populations P, the counts are independent
and

(Xi|Pi; �i) ∼ Poisson(Pi�i) (1)

This distributional assumption is usually made for vital events and Brillinger [27] derived
it through an approach where vital rates are treated as statistics calculated out of Poisson
process models generating events on the Lexis diagram.
To track the time evolution of the rates and to make projections, we work with the logarithm

of the rates, �it = ln (�it), rather than the rates directly. This transformed parameter is quite
common in statistical studies because it is the natural parameter of the Poisson distribution
seen as a member of the exponential family. This brings some theoretical advantages, in
terms of the existence of a set of simple suQcient statistics for regression parameters and
some simpli?cation of the computational algorithm.
We adopted an area-speci?c second-degree polynomial trend model for the evolution of the

rates over time. This allows acceleration of deceleration of the rates to be captured. Since the
projection we have in mind is a short term one, the well known disadvantages of unrealistic
long term projections of polynomial models are avoided. Hence

�it = ln (�it)= �i + �i(t − 1) + �i(t − 1)2 (2)

for i=1; : : : ; 117 and t=1; 2; 3.
In this way, �i represents the logarithm of the rate in area i in the ?rst year and �i+�i(2t−1)

represents the increment on the logarithm of the area i rate when we pass from year t to
t + 1. We denote by �;� and � the vectors with all �i; �i and �i, respectively.

We want to emphasize that the parameters of the polynomial are speci?c by area. This
implies that each area will have its own estimated regime of increase, stability, or decrease
over time. This also implies that we are allowing an interaction between space and time in
our procedure since the e�ect of time will not be the same in di�erent areas.
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Each area-speci?c polynomial has three parameters and we have just three observed counts
over time. Hence, there are too many parameters in the likelihood function to make this model
useful. To keep this model, it is necessary to impose additional constraints and this comes
through the prior distribution in the Bayesian approach, as we describe next.

5. THE BAYESIAN APPROACH

In the Bayesian approach, the prior knowledge about the parameters �;� and � can be ex-
pressed by a distribution that stimulates con?gurations with neighbouring areas showing similar
values for these parameters. This distribution does not indicate the location of eventual high
and low values in a map. Rather, it merely states that the values are dependent and tend to
be similar if they are neighbours. A distribution satisfying this requirement has density of the
following form:

f(�1; : : : ; �117|��)∝ exp

(
−��

2
∑
i∼j

(�i − �j)2
)

f(�1; : : : ; �117|��)∝ exp

(
−��

2
∑
i∼j

(�i − �j)2
)

(3)

f(�1; : : : ; �117|��)∝ exp

(
−��
2
∑
i∼j

(�i − �j)2
)

where i∼ j if the areas i and j are neighbours. Note that, by making neighbouring parameter
values similar, we decrease the sums in the exponents, increasing the value of the density.
Strictly speaking, this is not a proper density since it is invariant by adding a constant to
all entries of the vectors �;� or �. This will not be a problem because the posterior density
will be proper even with these improper densities [17]. We also assume that �;� and �
are independent conditionally on the hyperparameters ��; �� and ��. Hence, the joint prior
distribution is the product of the distributions in (3).
Denote by �−i the vector � with the ith co-ordinate removed. In the same way, de?ne the

vectors �−i and �−i. Considering the values in the vector �, denote by �i the arithmetic mean
of the ni neighbouring areas of i. Similarly, de?ne �i and �i. The distributions in (3) imply
conditional a priori distributions for �i; �i and �i expressed, respectively, by

(�i|�−i)∼N (�i; 1=(��ni))
(�i|�−i)∼N (�i; 1=(��ni)) (4)

(�i|�−i)∼N (�i; 1=(��ni))

This way of expressing the prior knowledge about �;� and � takes into account the spatial
structure between the areas since the value of one parameter is centred around the mean
of their neighbours’ values. Distributions de?ned in (3) are usually called conditional auto-
regressive (CAR).

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2319–2335
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The degree of similarity among neighbouring area parameters is controlled by the hyper-
parameters ��; �� and ��, which are assumed to follow independent gamma distributions. More
speci?cally, ��∼�(a; b); ��∼�(c; d), and ��∼�(e; f) where a; b; c; d; e and f are known and,
in this paper, set equal to 0.001, which leads to ‘only just’ proper prior distribution [28]. We
comment on possible problems with this prior speci?cation in the Discussion section.
After collecting the data Xit , the knowledge about the parameters �;� and � is updated

through the posterior distribution given by

fpost(�;�; �; ��; ��; ��|X ) ∝ L(X |�;�; �; ��; ��; ��)fprior(�;�; �; ��; ��; ��) (5)

The function L(X |�;�; �; ��; ��; ��) is the likelihood function of the model in (2) and

fprior(�;�; �; ��; ��; ��)

is the joint prior distribution of the parameters, given by the product of the expressions in
(3) times the hyperparameters’ densities. Through the posterior distribution of the vectors �;�
and �, we make inferences concerning them, the logarithms of the rates and the rates �it
themselves.
It is not possible to obtain analytical expressions for this posterior distribution due to the

high dimensionality of the problem. One alternative, which has become standard, is to generate
samples of the posterior distribution through Markov chain Monte Carlo methods [29]. We
used the program BUGS 0.5 to carry out our calculations [28].
We see some important di�erences between our model and others used in the literature

[23–25]. To highlight the di�erences, we simplify the latter ones eliminating the covariates and
age–sex strata. Hence, in our notation, the Xia and Carlin [24] model reduces to �it = �+�t+�ti
where, given the hyperparameters, the set {�t1; : : : ; �tn} has a CAR spatial distribution at time
t and the sets are independent across time. Therefore, the space–time interaction appears as
a spatial structure changing over time. Rather than modelling the time change pattern, they
left �t1 and �t+1

1 unrelated in the prior distribution and in the likelihood. The same is true for
the Waller et al. [23] model which becomes �it = �ti + �

t
i where �

t
i are spatially unstructured

parameters and �ti follows a CAR distribution within time and both sets, {�t1; : : : ; �tn} and
{�t1; : : : ; �tn} are independent across time given the hyperparameters. The model proposed by
Knorr-Held and Besag [25] reduces to �it = �t + �i + �i where �i are spatially unstructured
parameters and �i follows a CAR distribution. Their approach does not model space–time
interaction since the e�ects of time and space are additive.
In contrast, our model allows for space–time interaction in the form of area-speci?c time

trends which varies smoothly in space through the spatial correlation between the trend para-
meters. We prefer our approach because it mixes the space and time components in a simple
way, easy to understand and to explain to epidemiologists. At the same time, it is Dexible
enough to model short time series in each area, as for our case.

6. MODEL SELECTION

Initially, we model the time evolution of the logarithm of the HVL rates as a second degree
polynomial in t, as shown in (2). However, we want to consider the suitability of modelling
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this evolution with a ?rst degree polynomial or with a model having time-constant rates.
Hence, we propose two additional models to describe the time evolution of the logarithm of
the rate. The linear model is given by

�it = ln (�it)= �∗i + �
∗
i (t − 1) (6)

and the time-constant rates model is given by

�it = ln (�it)= �∗∗i (7)

i=1; : : : ; 117 and t=1; 2; 3.
In the Bayes approach, one way to compare two models is through the Bayes factor,

de?ned as

B=
P(X |M =1)
P(X |M =2)

where M is the model indicator. It compares the models through the ratio between the marginal
density of the observed data under model 1 and under model 2. We can write B as

B=
P(M =1|X )P(M =2)
P(M =2|X )P(M =1)

where P(M =1) and P(M =2) are the prior probabilities of models 1 and 2, respectively,
and P(M =1|X ) is the posterior probability of model 1. Similarly, we de?ne P(M =2|X ).

A procedure to calculate the Bayes factor in complex models has been proposed [30]. The
main idea is to obtain P(M = j|X ), for j=1; 2; through the introduction of the indicator M
as an additional variable in the problem and, after that, to estimate its posterior probability
as the frequency of the M =1 event occurs in the MCMC run.
Unfortunately, this procedure has not worked well in practice. The MCMC algorithm did not

jump between the models (either quadratic and constant, or quadratic and linear), remaining
in only one of them along the chain run. The proponents of this method had the same
diQculty [30]. In spite of the adjustments made in P(M =1) and P(M =2) to allow these
jumps to occur, as suggested by those authors, the problem persisted in our analysis.
Another alternative to deal with the issue of model selection is to omit some data from

the ?tting process and then to choose that model which makes the best prediction of those
omitted data. For that, we select areas with at least one disease case in the last period. In
each one of these areas, one at a time, we omit the observation from the last period and
run the MCMC algorithm. The elements of the matrix X with the pseudo missing data are
treated as a parameter, and a sample is obtained from the posterior distribution of this new
parameter. The justi?cation to not select areas with zero cases in the last year is that most
of the predictions in these cases would be equal to the observed value, zero, and hence less
informative about the di�erent performances of the models.
Out of a good model, we expect to have the posterior distribution of the parameter centred

in the observed value of the corresponding data. Hence, we de?ne a measure p as

p=min{P(Xit¡vit |X−it); P(Xit¿vit |X−it)}
where vit is the true value of Xit and X−it is the matrix of cases counts with the value vit
missing. The measure p varies between 0 and 0.5, and the larger p, the better the model.
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Table I. Descriptive statistics for the p measure of the proposed models for the logarithm
of human visceral Leishmaniasis in 11 areas of Belo Horizonte.

Model Median Mean 1st and 3rd quartiles CoeQcient of variation

Constant 0.047 0.077 0.033–0.101 0.919
Linear 0.120 0.174 0.086–0.263 0.722
Quadratic 0.105 0.136 0.065–0.191 0.670

Using the posterior distribution sample, we can calculate an estimate of p, with the above
probabilities evaluated through the empirical frequencies in the MCMC run.

7. RESULTS

The three proposed models to describe the time evolution of HVL rates (constant, linear and
quadratic) are compared through the procedure described in the Section 6, evaluating the
measure p in 11 areas independently chosen among those areas where there was at least
one case recorded during the study period. The measure p is calculated using the estimated
a posteriori mean �−i3 distribution of �i3 obtained with the information of the last period in
area i missing. This is done in the following way:

p=min{P(Wi3¡vi3|X−i3); P(Wi3¿vi3|X−i3)}

where Wi3 is a random variable with Poisson distribution with mean �−i3Pi3. The results are
presented in Table I using 20 000 iterations collected every 10th element with 10 000 iterations
as burn-in.
Analysing Table I, we note that we should choose one between the linear and the quadratic

models. To simulate from the posterior distribution of the underlying rates �it , we substitute
in (6) and in (2) the MCMC generated samples of �∗; �∗ and of �;� and �, respectively.
In this way we estimate the HVL rates posterior distribution in each zone for the three years
studied. We can also ?nd the posterior distribution of the predicted �i4 value. We summarize
the posterior distributions by the posterior mean E(�it |X ).
Figure 3(b) shows the plot of the crude rates for the 40 zones with at least one case in

the three periods. Figure 3(a) shows the plot of E(�it |X ); t=1; 2; 3; 4, using the linear model
for these same 40 areas and Figure 3(c) uses the estimates based on the quadratic model.
We note that, using crude rates, we can neither visualize well the time evolution of the rates
nor notice the areas with higher risks of occurrence of the disease, except for areas 55; 43; 36
and 64, which stand out very clearly. The estimates of the other zones su�er from the high
instability of the crude rates, varying abruptly from year to year. Analysing the graphs with
the rates estimated by the linear and quadratic models, with the projections for the following
period, we can notice that, in both models, some areas stand out due to their risk pro?le.
These areas are labelled by their zone code in the plots. The e�ect of the Bayesian estimates
is to make clearer the time evolution of the rates, pointing out areas which can be of great
concern.
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Figure 3. Time plot for the rates of 40 zones with at least one case in the three periods. (a) Plot
of the Bayesian estimates of the rates using the linear model for the logarithm of the rates. (b)
Plot of the crude rates. (c) Plot of the estimates based on the quadratic model. Time 0 is the
period 1994=1995, time 1 is the period 1995=1996, and time 2 is the period 1996=1997. In (a) and

(c), time 3 corresponds to the projected 1997=1998 period.

Comparing Figures 3(a) and 3(c), we see that, in general, the projections given by the
quadratic model are more pessimistic than those from the linear model, except by area 74,
which appears as the area with the fastest increase. The quadratic model highlights the same
areas as the linear model, and some additional ones, such as areas 97 and 74. These latter
areas are not close to those where the disease was introduced in Belo Horizonte, especially
area 74, located in the opposite side of the municipality. This fast increase can characterize
a new disease focus.
The objective of the projections is to provide information to allocate public e�orts in the

areas a�ected by the disease and to evaluate the results of these e�orts. Therefore, extremely
high precision to the estimates and projections is not crucial if the decisions are the same
whatever the adopted model, as it is the case here. Both models show in a clear way which
areas are worrisome and how the disease is developing in time. Any model leads to approx-
imately the same ranking and the same relative priorities among the areas.
Figures 4(a) to (c) and Figure 5 show the maps using the rates estimated by the quadratic

model for the three periods considered and the projection for the next period. Comparing with
the maps of Figure 2, we note that the Bayesian maps are smoother and show the spread
of the disease from Northeast and East in direction to the Northeastern and Northern regions.

Copyright ? 2001 John Wiley & Sons, Ltd. Statist. Med. 2001; 20:2319–2335
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Figure 4. Maps of MCMC posterior mean estimates of HLV rates (per 100 thousand) in the zones
of Belo Horizonte (a) the period 1994=1995; (b) the period 1995=1996; (c) the period 1996=1997.

White areas are those with zero inhabitants.
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Figure 5. Map for the Bayesian projections of human visceral Leishmaniasis rates (per 100 thousand)
in the zones of Belo Horizonte for the period 1997=1998. White areas are those with zero inhabitants.

Figure 6 shows the sample trace plots and kernel posterior density estimate of the hyper-
parameters ��; ��; ��. Observe that the plots have di�erent scales. The �� and �� plots provide
further evidence for the space–time interaction. In fact their 95 per cent credibility intervals
are (0.78, 17.90) and (2.47, 35.40) and, since the �� interval is much larger than that of ��,
there is evidence that the space–time interaction occurs primarily in the linear trend rather
than the quadratic time trend. The reason is the typically smaller precision and, therefore, the
larger variance of the linear trend parameters across areas as compared with the quadratic
term. To clarify this statement, consider what are the typical realizations from the posterior
joint distribution of � and of �. Because there is appreciable posterior probability that ��¡��,
the map of a typical realization of � will be smoother than that of �. Hence, the changes on
the time pro?le from area to area are due more substantially to di�erences in � rather than
to di�erences in �.
We tested convergence of the generated MCMC runs checking the hyperparameters and

of some area-speci?c parameters posterior distribution. Based on Geweke’s [31] convergence
diagnostic test, we calculated the Z-score statistic for the three hyperparameters ��; ��; ��,
?nding 1.18, −1:27 and 0.995, respectively. Since these statistics should have standard normal
distribution under the null hypothesis of stationarity, we ?nd no evidence against convergence
of the MCMC runs. In the Heidelberg and Welch [32] test, we had the Cramer–von Mises
statistic with values 0.279, 0.320 and 0.280 for hyperparameters ��; ��; ��, respectively, again
providing no evidence of non-stationarity.
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Figure 6. Sample trace plots and kernel posterior density estimate of the hyperparameters
��; ��; �� for the quadratic model.

We also calculated the Gelman and Rubin [33] R convergence statistic based on four quite
di�erent initial values for all parameters. Monitoring the hyperparameters ��; ��; �� in batches
of 50 updates, we found the median R to be equal to 1.01, 1.09, 0.97 and the 97.5 per cent
percentile to be 1.16, 1.12, 1.08, respectively, and therefore, the chains converged according
to this criterion. We also calculated the above tests using the �i; �i and �i chains from ?ve
randomly selected areas, again ?nding no evidence of non-stationarity.

8. DISCUSSION

In this article we make inferences for the rates of human visceral Leishmaniasis in Belo
Horizonte from 1994 to 1997, with projection to June 1998. We use a methodology based
on the Bayesian approach ?tted with the help of MCMC methods. This procedure ?lters out
a large part of the variability due to the random Ductuation in the crude rates, a Ductuation
which is not associated with the underlying risks. Additionally, the methodology incorporates
in an explicit way the discrete nature of the counts and, implicitly, the spatial correlation
between underlying rates of neighbouring areas. The latter is obtained through the spatial
structure of the parameters’ trend on time in each area. We also propose a method to choose
di�erent models for the risk evolution.
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The gamma hyperpriors we adopted are proper and it is suggested in the BUGS software
and elsewhere that they are nearly non-informative. However, as one referee pointed out, there
is room for concern in adopting this kind of hyperprior since Natarajan and McCulloch [31]
have recently shown that its use in some examples can lead to inaccurate posterior estimates
which are not be identi?ed from the MCMC runs. For a class of spatial models, related
but not containing those used in this paper, suQcient and necessary conditions for a proper
posterior has been given [32; 33]. It is not obvious how to generalize these results for our
speci?c model and the authors are currently working on this issue.
The Bayesian results provide a clear picture of the complex disease development. The

information on Figures 3 and 4 suggests that the health oQcials’ actions avoided the increase
of the epidemic curve since most of the rates decline in time. The decline was steeper on areas
with initially high prevalence. However, the public health actions were not suQcient to prevent
the geographical di�usion of the disease and the appearance of new foci of the disease. The
declining rates coupled with di�usion can be seen in the sequence of Bayesian maps which
show a ?nal picture of few and relatively small disease foci scattered in the region. The Eastern
focus is present since the beginning of the period, the Northern focus seems to appear by
di�usion from the initial one and the Western focus is probably a genuinely new focus.
We believe that the control measures adopted in Belo Horizonte by the municipal Zoonosis

Service contributed to reduce the human incidence. In 1994, 3402 houses were sprayed with
pyrethroid insecticides and this number increased to 46 980 in 1995. Next year, there were
46 258 sprayed houses, and in 1997 this number reduced to 22 640 houses. Additionally, in
part of the city during 1996, the Zoonosis Service used spatial spraying with organophosphate
insecticide spray for Aedes aegypti because of one dengue epidemic and this action is likely
to have reduced the Leishmaniasis visceral vector population.
The geographical di�usion of the disease can be explained by two factors. The ?rst one

is the dog search procedure. The service considers only those dogs living in households and
we suspect there is a relatively large number of stray dogs in the city. Positive untested dogs
wandering in the city can spread the disease relatively fast. Another possible factor is the
intense action of the oQcials during the years of this study in areas with high canine preva-
lence. This could favour the increase of the disease in the other areas with low prevalence
and therefore lower control.
The adoption of the methodology of spatial Bayesian models can contribute to redirect

the control programme, with larger priority to areas where the Bayesian projections indicate
larger increase. Let us point out, however, that the follow-up period is short and the secondary
nature of our data is subject to the typical biases of this type of information, such as, for
example, the underreporting of cases.
The results show that, as opposed to the crude rates, the Bayesian estimates are much sim-

pler and clearer to use to orient public policy decisions in this health problem. They provide a
better scenario of areas with increasing or stable rates, a classi?cation of areas in high and low
risk zones, and they point out the presence of a new disease focus which needs close scrutiny.
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